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Abstract

A mixture model is a probabilistic model that allows us to make inferences about the charac-

teristics of sub-populations from observations on the overall population, without any information

about the membership of individuals in the sub-populations or even the number of sub-populations.

In this chapter, I present the theory of mixture models, and an application in which I identify con-

sumption classes in urban India in 1999-00 (NSS). Suppose there are 3 sub-populations – a lower,

a middle and an upper consumption class – determined by the total number of different durables

owned by households. I construct a three-component (or three-class) mixture model of household

durable ownership, which is assumed to be distributed binomially by class. I then demonstrate

the use of the Expectation Maximization (EM) algorithm to estimate the size and mean durables

owned by each class, as well as the probability that a household with a given number of durables

belongs to a given class. Finally, I show how to assign households to classes using the mixture

estimates, which allows further investigation of class-specific characteristics.

1 Introduction

A mixture model is a probabilistic model that allows us to make inferences about the characteristics

of sub-populations from observations on the overall population, without any information about the

membership of individuals in the sub-populations or even the number of sub-populations. In this

chapter, I present an introduction to mixture models in a specific application – the identification of
∗Dept. of Economics, 4700 Keele Street, Toronto, ON M3J 1P3, Canada. Email: maitra@yorku.ca

1



urban consumption classes (or sub-populations) in India after the widespread liberalization policies of

1991 came into effect.

Suppose that in the overall urban population, there are 3 sub-populations – a lower, a middle and

an upper class – determined by the total number of different durables owned by households. Can

we identify the size and the (distinct) durable ownership pattern of each class – without specifically

knowing the class-membership of households – such that these, in combination, can generate the

empirically observed durable ownership pattern in the entire urban poulation? Supposing that we

could indeed identify classes in this way, how can we tell how many classes (or sub-populations) there

are? How can we be sure that sub-populations do exist in the first place?

A finite mixture model of durable ownership provides an intuitive framework for answering the

questions posed above. In the following sections, I construct a three-component (or three-class) mixture

model of household durable ownership, which is assumed to be distributed binomially by class. I then

demonstrate the use of the Expectation Maximization (EM) algorithm (using data from the Indian

National Sample Survey, urban sub-sample, 1999-00) to estimate the size of each class and the mean

number of durables owned by each class, as well as the probability that a household with a given number

of durables belongs to a given class. Also, I point to challenges that may arise in the interpretation of

mixture estimates in general, and how to address them in our application so as to generate informative

and meaningful estimates.

2 Finite Mixture Models

Consider a population of households where characteristic Y is distributed according to the density

function f(y).1 Suppose now that there are n sub-populations in a population of households (where n

is finite), and the characteristic Y in households from sub-population i follow the distribution fi(y),

for each i = 1, 2, ..., n. Then,

f(y) =

n∑
i=1

θifi(y) (1)

where θi is the probability that any household belongs to sub-population i. Since households must

belong to one of the n sub-populations,
n∑

i=1

θi = 1. θi are referred to as mixing probabilities. Equation

1A note on notation: throughout the paper, capital letters (e.g. Y ) denote a variable that can take several values,
while small letters (e.g. y) denote specific values. The only exception to this rule is the label N , which is used to denote
sample size.
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(1) represents an n−component mixture model (McLachlan and Peel (2000)).2

Note that the actual class membership of households is unknown. Let J denote the latent variable

that represents the (unknown) class to which any household belongs, J = 1, 2, ..., n. Suppose that

the joint distribution of characteristics Y and sub-population membership J is given by ρ(y, j). Then

f(y) in (1) above clearly represents the marginal distribution of Y derivable from ρ(y, j). Likewise,

fi(y) represents the conditional distribution, or, the distribution of Y conditional on belonging to

sub-population i. More explicitly, in the mixture setup:3

ρ(y, i) = θifi(y) (2)

for any i = 1, 2, ..., n, and

f(y) =

n∑
i=1

ρ(y, i) =

n∑
i=1

θifi(y) (3)

Additionally, using Bayes’ Law, the conditional probability that any household with characteristic

y belongs to class j is given by:

Pr(J = j/Y = y) =
θjfj(y)
n∑

i=1

θifi(y)

(4)

for any j = 1, 2, ..., n.

Let us look at some numerical examples of mixture models such as in (1). For specificity, suppose

n = 2 (viz. a two-component mixture model) and suppose that the sub-population densitiesfi(y;µi, σ
2)

are normal with parameters (µi, σ
2). What would the marginal density f(y) look like for different

mixing probabilities θ1, 1− θ1? The graphs in Figure 1, taken from McLachlan and Peel (2000),

provide a visual illustration of what the marginal density looks like when it is a mixture of two normal

densities.

[INSERT FIGURE 1(a) AND FIGURE 1(b)]
2In (1), f(y) and fi(y) refer to univariate distributions of a single characteristic Y . Mixture models may also apply

to multivariate distributions f(y1, y2, ..., yk) and fi(y1, y2, ..., yk) of k characteristics (Y1, Y2, ..., Yk). See McLachlan and
Peel (2000).

3Recall the relationship between joint and marginal distributions: if f(a, b) represents the joint probability of A = a

and B = b, then the marginal probability that A = a is Pr(A = a) =
∑
x

f(a, x) (where x represents all possible values

that B can take).
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Figure 1(a) plots the (marginal) density of a mixture of 2 components mixed in equal proportion.

The densities of the 2 components are normally distributed with common variance 1. The mean of the

first component is 0 throughout, while the mean of the second component is 1, 2, 3 and 4, respectively,

in diagrams (i)-(iv). In Figure 1(b), the components are the same as above but they are mixed in

proportions 0.75 (θ1) and 0.25 (θ2), respectively, instead of equal shares. Note how the shapes of the

marginal densities are bimodal if the 2 components have sufficient separation (in terms of their means)

between them. Note also (as in Figure 1(b)(i)-(ii)), how an asymmetric density may be obtained by

mixing 2 symmetric components, e.g. when the means of the component densities are close enough

and the distinction between them is obscured by unequal mixing probabilities. Varying the number of

components, means, variances and mixing probabilities can therefore generate a large range of shapes
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of the marginal density.

In Figures 1, however, we have constructed the marginal distribution f(y) by mixing two known

component distributions fi(y;µi, σ
2), that are normal. In empirical applications, the situation is

reversed – we have at our disposal, an empirical distribution of y sampled from the population distri-

bution f(y), and we seek to determine the size and characteristics of sub-populations (if any) that may

have mixed to generate it. Given the flexibility of shapes that we have demonstrated can be obtained

by mixtures, we could of course “fit” a mixture model to the data (using methods described in the

sections below) assuming the existence of a certain number of sub-populations. But can we argue that

sub-populations exist simply because they are able to “explain” our data? Consider, for example, the

Pickering-Platt debate in the 1950s and 1960s about the patho-physiology of hypertension (McLachlan

and Peel (2000)). Platt (1963) claimed that the distribution of blood pressure was a two-component

mixture of “hypertensive” and“normotensive” sub-populations. But Pickering (1968) argued that “hy-

pertensive” was merely a label assigned to those with blood pressure readings in the upper tail of the

distribution for a single population, viz. that the blood pressure distribution was not a mixture at all!

How then do we determine if there do indeed exist sub-populations that have mixed to generate

our data? Furthermore, how many sub-populations (if any) exist in the mixture? In the next section,

we discuss these issues in the context of identifying consumption classes in post-liberalization India.

3 Consumption classes in post-liberalization India: Data and

Definitions

What happened to the lower, middle and upper class in urban India after enactment of the liberalization

policies of 1991? Did they become more affluent or stagnate economically as the liberalization policies

came into effect? Did the relative proportions (or sizes) of the different classes in the urban population

undergo a change?

To answer any of these questions, we would first have to determine who constitutes the lower,

middle and upper classes, based on their level of affluence and income. One way to do this would be

to assume cutoff levels of income or household expenditure that we believe might correspond to the

different classes (Banerjee and Duflo (2008); Birdsall et al (2000); Ravallion (2010); Birdsall (2010);

Ablett et al (2007); IBEF (2005)). Another approach would be to define the middle class to consist of

every household that lies between, say, the 20th and 80th percentile of income in the economy (Easterly
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(2001)). As we can see, these approaches are quite sensitive to the class-specific cutoffs being used.

In addition, defining the middle class to lie between the 20th and 80th percentile implies that the size

of the middle class is always 60% of the population, with no room to change. Furthermore, while

cutoffs-based approaches implicitly assume clean, non-overlapping ranges of incomes/expenditures of

the different classes, the general lack of consensus among researchers on specific cutoff levels suggests

that it might be more appropriate to think of class boundaries in a probabilistic sense, i.e. by thinking

of income/expenditure ranges corresponding to different classes as being overlapping instead of being

mutually exclusive.45

In addition to the larger problems associated with cutoffs-based approaches, there is a specific

problem surrounding the measurement of household expenditures from the Indian National Sample

Survey (NSS), 1999-00 survey. The recall period used for reporting expenditures in the 1999-00 NSS

questionnaire was shorter than in previous years (Deaton and Kozel (2005)). This could have resulted

in higher total household expenditures reported in 1999-00 than in previous years, not due to any real

increase in consumption but due to people being able to recall their more recent purchases with greater

accuracy! To avoid running into this issue with measures of expenditure – especially when we compare

our findings across previous rounds of NSS – we turn to a different measure of consumption to define

classes, viz. durable ownership. Our measure of durable ownership is drawn from a survey question

that asks respondents if a certain durable good is present in the household at the time of the survey.

This measure is immune to the change in recall period, making our analysis robust to comparisons

over the 1990’s (Section 5.2).

Apart from the general ease (and reliability) of measurement of durable ownership, it is arguably

also a good variable for measuring consumption standards of households over time. This is because

durables are a store of utility that represent the stock component of household wealth rather than the

flow component embodied in PCE. The ownership of durables assures the realization of a stream of

consumption utility in future periods. These characteristics make durables ownership a useful measure

of consumption standards – a permanent, sustainable aspect of consumption (Bar-Ilan and Blinder

(1988)) – and, hence, an appropriate choice of variable for the identification of consumption classes.6

4See Section 6, where we discuss how a traditional clustering model such as the K−Means model would lead to a
non-probabilistic assignments of households to classes.

5As Ravallion (2010) points out, some of the disagreement about cutoffs is due to the level of income of the countries
concerned, viz. whether a developed or a developing economy. However, there does not appear to be a clear consensus
on cutoffs even in studies that focus solely on developing nations.

6The approach adopted in this paper may, therefore, be considered a ’dual’ approach to the expenditure-cutoffs-based
approach – here, durables ownership is used to identify the classes and the expenditure-ranges of the classes thus identied
are subsequently explored (instead of using expenditures to identify classes in the first place). In addition, the mixture
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Our goal, therefore, is to derive a definition of classes – lower, middle and upper – in urban

India from the 55th Round of the National Sample Survey data (1999-00), using data on the durable

ownership of households. Our underlying premise is only that higher classes enjoy a higher standard of

living (or, are more affluent) than lower classes; no further specifications are made about who or what

constitutes each class. In particular, we use the ownership of different durable goods by households to

be a measure of the standard of living enjoyed therein.

We consider 12 specific durable goods in our analysis, as these have often been linked to middle

class status in India in existing literature (Banerjee and Duflo (2008), Senauer and Goetz (2003)) –

viz. record player/gramophone, tape/CD player, radio, television, VCR/VCP, electric fan, washer,

refrigerator, air conditioner, bicycle, motor cycle/scooter and motor car/jeep. We assume that owning

a higher number of different durable goods indicates a higher standard of living. Hence, our variable

of interest – call it Y – is the total number (out of 12) of different durable goods owned by households

as reported in the urban subsample NSS, 1999-00 (Y = 0, 1, 2, ..., 12).

Note that the weight of different durable goods in the sum Y is the same regardless of the price

of the good. This may appear to make Y an inadequate measure of affluence, except that there is a

“natural weighting” involved in the definition of Y as a simple sum. An expensive item (such as an air

conditioner) is more likely to occur in households with more total goods (i.e. higher value of Y ) than

a cheap item (such as a fan). So, even though it appears that a household with an air conditioner is

treated the same as a household with a fan, this is only true when other factors are the same. We

surmise that other factors are not the same in a household that has a fan and one that has an air

conditioner, and that these dissimilarities will naturally place the ownership of more expensive durable

items (air condioners) in households with greater affluence (higher Y ), even without using an explicitly

higher weight on these premium goods The same argument holds also for household owning different

qualities of the same good (e.g. black-and-white vs. plasma tvs) as well as for households owning

different numbers of units of the same durable good.

Figure 2 represents the distribution of Y in the sample of households in the urban round of NSS,

1999-00. It represents a draw from the distribution of Y in the urban population, viz. f(y) in (1).

What does the shape of the distribution tell us about the distribution of affluence in urban India?

[NSERT FIGURE 2]

approach allows us to determine the distribution of households in any class over the relevant expenditures-range, instead
of assuming that every household in this range belongs to this class with certainty, as in the cutoffs-based approach
(Section 5.4 provides a further discussion of this point).
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The shape of the distribution in Figure 2 reveals more than one mode, which we saw in Figure 1,

might be an indication that it is a mixture of component sub-population densities. But bimodality in

itself is not sufficient to justify the existence of sub-populations. The concept of “class” is, however,

more than a purely statistical phenomenon – it appears in historical as well as recent literature (see

Brittanica), as individual groups in the overall population that have distinct characteristics, as opposed

to labels assigned to those with different levels of income or consumption (recall the Pickering-Platt

debate, Section 2). In addition, Maitra (2021) shows that when households signal their social status in

the marriage market with their observable durable ownership, then total durable expenditure levels of

households segregate into clusters, interpretable as “classes”. There is, therefore, historical evidence as

well as an explicit economic modeling of the class phenomenon, suggesting that a mixture model with

classes – as sub-populations – may indeed be an appropriate way to model the durables’ ownership

distribution in Figure 2. We will call the sub-populations “consumption classes” to underline the fact

they are identified using a measure of consumption, viz. durable ownership.

This brings to us to the next question of how many classes could generate a distribution such as
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in Figure 2. Should we look for 3 classes -- a lower, a middle or upper -- that describe the density in

Figure 2? Or more, given that there may be a lower middle class and an upper middle class? Note

that in an extreme (and completely uninformative) scenario, we could assign each household in our

sample (say, of size N) to its own class and achieve a perfect fit to the density in Figure 2 using this

N−component mixture model! To counter this phenomenon, we impose the criterion that the optimal

number of classes is the smallest number of sub-populations that yields a good fit to the marginal

density in Figure 2. In other words, we iteratively estimate t−component mixture models, t = 2, 3, ....

The smallest value of t to provide a good fit to the marginal distribution (Figure 2) is the appropriate

number of classes that must constitute the urban population in 1999-00.

In Section 5.1, we show that the urban data from NSS 1999-00 is best described by 3 classes, which

we will call a lower, a middle and an upper class. In the next section, therefore, we will present the

three-component mixture model used to identify the classes and estimate their size and characteristics.

4 A Three-Component Mixture Model to Identify Consump-

tion Classes

Consider 12 durable goods and let Y represent the total number of these goods that a household owns

at the time of interview, Y = 0, 1, 2, ..., 12. Households can belong to one of three classes – 1, 2 or 3 –

which are defined by the pattern of durables’ ownership of members. Denote the density of Y within

class i by ϕi(y) and the density of Y in the population by f(y).7 A Three-Component Mixture Model

postulates the following:

f(y) = π1ϕ1(y) + π2ϕ2(y) + π3ϕ3(y) (5)

where π1, π2 and π3 represent the proportions of class 1, 2 and 3 in the population, respectively

(π1 + π2 + π3 = 1).

To estimate the mixture model – i.e. to estimate the mixing probabilities πi and the conditional

distributions ϕi(Y ) – using maximum likelihood estimation (see Section 4.2), we make an assumption

about the family of (discrete) density functions to which ϕi (i = 1, 2, 3) belong. We choose the family

of binomial distributions, since binomial densities, depending on parameter values, are flexible enough

to represent symmetric as well as skewed densities. This feature of binomials gives us the ability to
7Remember that Y is a discrete variable, even though we use the term “density function” (and not “mass function”)

to describe its distribution throughout the chapter.
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capture potentially different shapes of different (class-specific) conditional densities of Y .

In particular, assume that a household owns each good with a fixed probability pi, which depends

on the class i (= 1, 2 or 3) to which it belongs. The ordering of the pi’s indicates which i (= 1, 2

or 3) corresponds to the lower, the middle and the upper class, respectively, since (by definition)

pL < pM < pU (L: lower, M : middle, U : upper). Assume that each good is obtained independently

by households. Hence the total number of goods owned by a class−i household follows a binomial

distribution with parameters 12 and pi, i.e. ϕi(Y ) ∼ Binomial(12, pi).

Note that we do not claim that households do indeed acquire each good independently and with

the same probability. The assumption of binomial densities is a tool to approximate the shape of the

conditional densities ϕi(Y ). Think of the process as one of identifying the shapes of the conditional

distributions ϕi(Y ); the parameters pi denote binomial densities that would successfully mimic these

shapes.8

If the population is a (binomial) mixture of three classes, what is the probability of drawing a

household in the sample with a certain level of ownership, say x? This probability – that of observing

level x of durable ownership in a household in the sample – is given by:

Pr(Y = x;π1, π2, p1, p2, p3) = π1ϕ1(x; p1) + π2ϕ2(x; p2) + π3ϕ3(x; p3) (6)

where πi represents the probability that the household we have drawn belongs to class i and ϕi(x; pi)

represents the (binomial) probability that a class−i household owns x durables.

The expression in (6) can be used to derive the likelihood function of drawing a sample of size

N with durable ownership levels (y1, y2, ..., yN ). The likelihood function may then be maximized to

obtain maximum likelihood estimates of the parameters, viz. those values of the parameters that would

be most likely to have generated the sample we have drawn, viz. (y1, y2, ..., yN ). However, maximum

likelihood estimation can provide challenges in terms of parameter estimation and hypothesis testing

for mixture models (McLachlan and Krishnan (1996)). Calculating likelihoods for a sample based

on a mixture model is complicated, and traditional numerical likelihood optimization techniques such

as Newton-Raphson break down. Here, I will use the Expectations Maximization (EM) algorithm

for likelihood maximization (McLachlan and Krishnan (1996); Dempster et al (1977); Hastie et al

(2001)). The EM optimum coincides with the likelihood optimum but is reached (somewhat slowly)
8See footnote 9 on the drawbacks of allowing dependence in ownership of each good, or a different probability pij of

ownership for each good i if in class j.
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using iterated steps. The algorithm and its application to this analysis are described in Section 4.3.

4.1 Identifiability and Observational Equivalence

Before attempting to estimate the binomial mixture model in (5)− (6), it is necessary to establish that

the model is identifiable. In general, a parametric family of densities f(y; Ψ) is identifiable if distinct

values of the parameter Ψ determine distinct members of the family of densities {f(y; Ψ);Ψ ∈ Ω},

where Ω is the specified parameter space (McLachlan and Peel (2000)). In other words, a parametric

family of densities f(y; Ψ) is identifiable when f(y; Ψ) = f(y; Ψ∗) ⇐⇒ Ψ = Ψ∗.

Blischke (1964) shows that a necessary and sufficient condition for identifiability of binomial mix-

tures is h ≥ (2r − 1), where h is the binomial parameter denoting the number of trials and r is the

number of components in the mixture. In the current application, h = 12 (the number of durables)

and r = 3 (the number of classes), so the condition for identifiability is easily satisfied. Hence the

model (5) is identifiable.9

Note also the issue of observational equivalence known to plague mixture models in general. This

means that even when the model is identified as defined above, there is observationally no difference

between, for excample, the parameter vector (π1, π2, 1− π1 − π2, p1, p2, p3) and the vector (π2, π1, 1−

π1 − π2, p2, p1, p3). Observational equivalence makes it hard to uniquely map parameters to class (in

the example above: is class 1 the lower class or class 2?). However, the very nature of the current

application – the identification of a lower, a middle and an upper class – provides a natural remedy

for the issue, since, obviously, pL < pM < pU (L : lower class, M : middle class, U : upper class).

Therefore, the ordering of the pi−estimates tells us which class is the lower class, which is the middle

class and which, the upper class.10

4.2 Estimation: Maximum Likelihood and the Expectations-Maximization

(EM) Algorithm

Having established identifiability, we now proceed to estimation of the mixture model. From (6), we

know the probability of observing a household with x durables in the sample. Recall that we have an

independent and identically distributed sample of N households where household j is observed to own
9In fact, a binomial mixture of up to 6 classes will be identifiable in our model with 12 durable goods, since h ≥ (2r−1)

is true for h = 12 and r ≤ 6.
10Recall that if we had assumed different probabilities of ownership pki for each durable good k (k = 1, 2, ..., 12) given

class i, we would be trying to estimate a vector of 12 probabilities for each class! The criterion for mapping 12−tuple
vectors of probability estimates to the lower, middle or upper class would not then be as straightforward as above.
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yj durables (j = 1, 2, ..., 12). What is the likelihood of having drawn this sample of households with

durables (y1, y2, ..., yN )? The likelihood is given by multiplying (given independence) the probabilities

in (6), i.e.

L(y1, y2, ..., yN ;π1, π2, p1, p2, p3) =

N∏
j=1

[π1ϕ1(yj ; p1) + π2ϕ2(yj ; p2) + (1− π1 − π2)ϕ3(yj ; p3)] (7)

where subscript j denotes household j (j = 1, 2, ..., N). The log likelihood function is then given by:

Log L(y1, y2, ..., yN ;π1, π2, p1, p2, p3) =

N∑
j=1

[π1ϕ1(yj ; p1) + π2ϕ2(yj ; p2) + (1− π1 − π2)ϕ3(yj ; p3)] (8)

The goal of maximum likelihood estimation is to find the values of the parameters (π1, π2, p1, p2, p3)

that would maximize the likelihood (7) (hence, the log likelihood (8)) of having drawn the sample we

have, viz. (y1, y2, ..., yN ). This involves solving first and second order conditions from (8) (obtained

by taking partial derivatives with respect to the parameters and setting them equal to zero). It is

hard, however, to obtain closed-form expressions for maximum likelihood estimates of the parameters

from (7) or (8). The Expectations-Maximization (EM) algorithm is a tool used to simplify difficult

maximum likelihood problems such as the above (McLachlan and Krishnan (1996); Dempster et al

(1977); Hastie et al (2001)) and is described in Section 4.3. The importance of the EM algorithm lies

in its ability to find a path to the maximum likelihood point estimates where traditional numerical

techniques typically fail.

4.3 Implementation of the EM Algorithm

Suppose that each household belongs to a particular class and let the dummy variables (δ1, δ2) represent

the class membership of households, i.e. δ1j = 1 if household j belongs to class 1 (0, otherwise), and

δ2j = 1 if household j belongs to class 2 (0, otherwise).

Clearly, (δ1, δ2) are latent variables since the class memberships of households are unknown. Sup-

pose, however, that (δ1, δ2) are known. Then the likelihood and log likelihood functions could be

written as:
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LEM (y1, y2, ..., yN ;π1, π2, p1, p2, p3) =

N∏
j=1

{π1ϕ1(yj ; p1)}δ1j{π2ϕ2(yj ; p2)}δ2j{(1−π1−π2)ϕ3(yj ; p3)}(1−δ1j−δ2j)

(9)

and

Log LEM (y1, y2, ..., yN ;π1, π2, p1, p2, p3) =

N∑
j=1

[δ1j log{π1ϕ1(yj ; p1)}+ δ2j log{π2ϕ2(yj ; p2)}

+(1− δ1j − δ2j)log{(1− π1 − π2)ϕ3(yj ; p3)}]

(10)

If class memberships (δ1, δ2) were indeed known, it would be easy to find close-form expressions

for maximum likelihood parameter estimates that maximize Log LEM in (10) above. Since class

memberships are not known, the EM algorithm computes the expected values of (δ1, δ2) conditional

on the data (call these (γ1, γ2)), plugs these into (10) and computes the maximands. The procedure is

iterated till convergence is obtained. The steps involved are outlined below (McLachlan and Krishnan

(1996); Dempster et al (1977); Hastie et al (2001)).

The EM Algorithm for a Three − Component Mixture Model

1. Start with initial guesses for the parameters: (π
(0)
1 , π

(0)
2 , p

(0)
1 , p

(0)
2 , p

(0)
3 )

2. Expectation (E) step: at the kth step, compute, as follows, the expected values (γ
(k)
i ) of

class membership conditional on the data (y1, y2, ..., yN ). Note that since class memberships are

binary, a household’s expected value of class membership conditional on the data is also the

estimated probability that a household belongs to class i conditional on the data. That is,

E(δij/(y1, ..., yN ;π(k−1), p(k−1)) = Pr(δij = 1/Y = yj ;π
(k−1), p(k−1))

=
Pr(δij = 1, Y = yj/π

(k−1), p(k−1))

Pr(Y = yj/π(k−1), p(k−1))

=
π
(k−1)
i ϕi(yj , p

(k−1)
i )

π
(k−1)
1 ϕ1(yj , p

(k−1)
1 ) + π

(k−1)
2 ϕ2(yj , p

(k−1)
2 ) + (1− π

(k−1)
1 − π

(k−1)
2 )ϕ3(yj , p

(k−1)
3 )

(11)
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Therefore, the conditional expected values (γ
(k)
i ) are given by the last term in (11) above, viz.,:

γ
(k)
ij

= E(δij/(y1, ..., yN ;π
(k−1)
1 , π

(k−1
2 ), p

(k−1)
1 , p

(k−1)
2 , p

(k−1))
3

=
π
(k−1)
i ϕi(yj , p

(k−1)
i )

π
(k−1)
1 ϕ1(yj , p

(k−1)
1 ) + π

(k−1)
2 ϕ2(yj , p

(k−1)
2 ) + (1− π

(k−1)
1 − π

(k−1)
2 )ϕ3(yj , p

(k−1)
3 )

(12)

i = 1, 2, 3; j = 1, 2, ..., N .11

3. Maximization (M) step: at the kth step, compute the parameters as follows. These are the

maximands of the EM-log-likelihood function in (10), when (δ1, δ2) are replaced by (γ
(k)
1 , γ

(k)
2 ),

viz. the expected values of class membership conditional on the data (calculated in the E step).12

π
(k)
i =

1

N

N∑
j=1

γ
(k)
ij (13)

p
(k)
i =

1

12
[

N∑
j=1

γ
(k)
j xj

N∑
j=1

γ
(k)
j

(14)

i = 1, 2, 3.

4. Iterate steps 2 and 3 (the E and M steps) till convergence is obtained in the estimates in

(13) −(14).13

As output, the EM algorithm yields the following estimates:14

1. π̂i: estimates of the (unconditional) probability that any household belongs to class i; i = 1, 2, 3

2. p̂i: estimates of the probability with which a class−i household owns a durable good; i = 1, 2, 3

11The expression for the conditional probability in (11)− (12) follows from Bayes’ Law (see equation (4)).
12The expressions in (13) and (14) follow directly from the first order conditions of maximization of (10), with (δ1, δ2)

replaced by (γ
(k)
1 , γ

(k)
2 ).

13It is straightforward to write a computer program that iterates through the steps of the EM algorithm. The author’s
code written in STATA is available upon request.

14Standard errors of estimates are obtained by taking the square root of the diagonal elements of the (5× 5) variance-
covariance matrix [I(π̂1, π̂2, p̂1, p̂2, p̂3)]−1. Denote the set of parameters by Ψ, viz. Ψ = (π1, π2, p1, p2, p3) and EM-

generated estimates Ψ̂ = (π̂1, π̂2, p̂1, p̂2, p̂3). Then, the (5× 5) information matrix is given by I(Ψ̂) = − ∂2LogLEM (Ψ̂)

∂Ψ2 ;
the variance-covariance matrix is given by [I(Ψ̂)]−1.
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3. γ̂ij : estimates of the (conditional) probability with which household j (with durable ownership

yj) belongs to class i; i = 1, 2, 3; j = 1, 2, ..., N.

The ownership probabilities p̂i and the corresponding class-specific (binomial) densities ϕi(y, p̂i) answer

our motivating question – who are the lower, middle and upper class? – by identifying the distinct

ownership patterns (densities) of the different classes. Moreover, the estimates of the unconditional

probabilities π̂i – interpretable as estimates of class shares – tells us the sizes of the urban lower, middle

and upper classes in 1999-00. Finally, the estimated (conditional) probabilities of class membership,

γ̂ij , along with π̂i and p̂i, enable a random assignment of each household into a particular class. This

allows a descriptive analysis of other class-specific household characteristics such as per capita monthly

expenditures, education of household heads, household types by employment and so on (see Section

5.4). The next section presents the results.

5 Results and Discussion

5.1 Estimates

The estimates produced by the EM algorithm are presented in Table 1. The numbers in column (1) of

Table 1 represent the population share of each class, π̂i. The middle class is estimated to constitute

62% of urban households. This is roughly equivalent to 17% of the total population, given that

urban households accounted for about 28% of all Indian households in 2001 (2001 census, Indiastat,

http://www.indiastat.com). The lower and upper classes are found to constitute 20 and 18% of urban

households, respectively. Asymptotic standard errors (obtained from the information matrix) are small,

supporting the existence of three classes in the population.

[INSERT TABLE 1]
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Column (2) reports estimates of the probability parameter pi for each class i = L,M,U . Lower class

households are found to own a good with 3% probability while middle and upper class households own

a good with probabilities of 25% and 52% respectively. Small standard errors support three distinct

patterns of durables consumption behaviour.15

The mean number of durable goods (out of 12) owned by class−i households is simply 12pi (the

mean of the binomial distribution for class i). These estimates are reported in Column (3) of Table 1.

The lower, middle and upper classes are found to own, on average, 0.3, 3 and 6.3 goods, respectively.

Figure 3 plots the binomial density functions ϕi at the estimated parameters p̂i (i = 1, 2, 3). It

is the shape and structure of each density ϕi(y; p̂i) that identifies each class i in our analysis. The

ownership density of the lower class and upper classes (binomials with probability parameters 0.03

and 0.52, respectively) are slightly positively skewed whereas that of the middle class is symmetric.

Recall that we used the family of binomial functions in our mixture model for precisely this purpose –

to allow for the estimation of different shapes of the different ϕi functions depending on the estimated
15The estimates (standard errors) of the differences are as follows: p̂L − p̂U = −0.5 (0.004), p̂L − p̂M =

−0.23 (0.002) andp̂U − p̂M = 0.27(0.003) (L ≈Lower; M ≈Middle; U ≈Upper).
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parameters p̂i. Recall also that in estimating the densities ϕi, we made no explicit assumptions about

who constitutes the classes other than that the three classes are different and that higher classes are

more affluent than lower classes. The criteria for class membership – viz. the location and shape of

the densities ϕi – were instead delivered by the estimation process, based on natural clusters in the

data.

[INSERT FIGURE 3]

Finally, note the overlapping sections of the density functions of the different classes, which indicate

that the level of durables owned do not uniquely identify classes (as in cutoffs-based approaches). In

Section 5.3, we will specifically calculate the probabilities with which a household with durables x

belongs to each of the classes.

Let us now construct the predicted marginal density of durable ownership from our estimated

parameters. If the population constitutes 3 classes in the proportions (π̂1, π̂2, 1 − π̂1 − π̂2) and with

densities ϕ1(y; p̂1), ϕ2(y; p̂2) and ϕ3(y; p̂3), respectively, then what is the predicted probability of

observing any level of durable ownership, say y∗, in this population? This is simply the expression in

(6), with parameter values set equal to the estimates. That is,
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P̂ r(Y = y∗; π̂1, π̂2, p̂1, p̂2, p̂3) = π̂1ϕ1(y
∗; p̂1) + π̂2ϕ2(y

∗; p̂2) + π̂3ϕ3(y
∗; p̂3) (15)

y∗ = 0, 1, 2, ..., 12.

Having calculated the predicted marginal density of Y as in (15), we can now answer the question:

how well does the predicted marginal density match the observed marginal density of Y ? Figure 4

plots the actual relative frequency of (Y) observations in the data along with the predicted values.

The figure demonstrates a very good fit to the data.

[INSERT FIGURE 4]

Recall, from Section 3, our assertion that the number of classes that describe the data must be the

smallest number of sub-populations that yields a good fit to the observed marginal density. Consider

then the findings from a Two-Component (two classes) Mixture Model fitted to the data by EM plotted

in Figure 5. The fit is visibly worse than that of the Three-Component Model. Hence, 3 appears to

be the minimum number of classes that provides a good fit to the data.
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[INSERT FIGURE 5]

5.2 What happened to urban consumption classes in India, post-liberalization?

The ultimate goal of our analysis was to examine the fate of urban consumption classes in India –

their sizes and characteristics – after the liberalization policies of 1991 came into effect. Maitra (2016,

2017) look at various aspects of this comparison using the mixture analysis outlined above, using

the NSS rounds of 1993-94, 1999-00 and 2004-05. The use of durable ownership data – immune to

known measurement issues in the NSS, 1999-00 round – to define the classes allows us to make credible

comparisons across these rounds of data. Moreover, the mixture approach precludes the need to make

arbitrary assumptions about who constitutes the classes in each survey year. These class-definitions

are, in fact, delivered by the mixture approach, which uses natural clusters in the data in each round
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to identify class-specific conditional ownership densities ϕi(p̂i) in each survey year.

Table 2 presents Maitra’s (2017) mixture results for urban classes in the NSS rounds of 1993-94,

1999-00 and 2004-05.16

[INSERT TABLE 2]

Notice the contraction in the size of the lower and middle classes over the decade 1993-94 to 2004-05,

while the upper class grows larger over this time. In terms of class definitions, the probability of durable

ownership (pL) of the lower class dropped dramatically between 1993-94 and 1999-00 but seems to have

caught up again in 2004-05 to the original 1993-94 level. The upper class seems to have stagnated a bit

over this time (pU has not increased), while the middle class seems to be doing somewhat better over

the period considered. Taken together, the estimates of class size and probabilites suggest a significant

wave of upward class mobility among urban households in India in the 1990s.17

5.3 Mixture-estimated Probabilities of Class Membership (γ̂i(y))

Let us return to our baseline mixture estimates for 1999-00 in Table 1, where 12 durable goods are used

in the definition of Y. The overlapping sections of the class-specific densities suggest that certain levels

of durable ownership may be compatible with households in more than one class. Can we calculate

the specific probability γ̂i(y) that a household belongs to different classes i (= 1, 2, 3) conditional on

the number of durables y owned?18 Using Bayes’ Law, as in equation (4), we can derive these specific

probabilities to be:
16The analysis presented in Table 2 uses a total of 8 (of the current 12) durable goods since these were the common

items asked about in the questionnaires across all the survey years. The results for 1999-00 urban classes are very similar
whether 8 or 12 durables are used. Also, 3 urban classes were found to be optimal in each of the years examined.

17See Maitra (2016, 2017) for a detailed discussion of the implications of these estimates for poverty and inequality in
India in the 1990s.

18Clearly, γ̂1(y) + γ̂2(y) + γ̂3(y) = 1 for any y = 0, 1, 2, ..., 12, since any household must belong to one of the 3 classes.
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γ̂i(y) =
π̂iϕi(y, p̂i)

π̂1ϕ1(y, p̂1) + π̂2ϕ2(y, p̂2) + π̂3ϕ3(y, p̂3)
(16)

Figure 6 plots the probabilities γ̂i(y) that a household belongs to different classes i (= 1, 2, 3)

conditional on the number of durables y owned. Evidently, households with low values of Y are most

likely to belong to the lower class (class 1) whereas those with the highest values of Y are almost certain

to belong to the upper class (class 3). Hence, unlike in previous studies that use the cutoffs-based

approach, the current approach places households (arguably, more realistically) in different classes with

a probability rather than with certainty.

[INSERT FIGURE 6]

In the next section, we will discuss how to use the estimated probabilities γ̂i(y) to assign each

household to a class. The assignment will allow us to look at characteristics (other than Y ) of each

class, further illuminating our understanding of who constitutes the different classes.

5.4 Class Characteristics: A Descriptive Analysis

We have shown that the mixture approach assigns households to different classes with a probability

rather than with certainty. Using these (conditional) probability estimates, it is possible to estimate

the number of observations of each value of Y that belongs to each class. Based on this computation,

we can randomly assign households to classes. Here is an example of how the assignment is performed.
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Suppose we estimate γ̂1(0) = 0.6, γ̂2(0) = 0.1 and γ̂3(0) = 0.3. This means that a household that

owns none of the twelve durable goods (i.e. Y = 0) belongs to class 1 with probability 0.6, class 2

with probability 0.1 and class 3 with probability 0.3. Now suppose that in the dataset, there are 100

observations for Y = 0. We can randomly assign 60 of these 100 households with Y = 0 to class 1

(consistent with γ̂1(0) = 0.6), 10 to class 2 (consistent with γ̂2(0) = 0.1) and 30 to class 3 (γ̂3(0) = 0.3).

The same procedure could be followed to randomly assign households to classes for each other value

of Y (i.e. Y = 1, 2, .., 12, respectively).19

Assigning a class to each household allows a descriptive analysis of the characteristics of each class.

Below, in Tables 3-4 and Figures 7-14, we will look at the durable ownership patterns for specific goods

as well as a host of socioeconomic characteristics.

Table 3 and Figure 7 reveal the durables consumption patterns of households belonging to the three

classes (assigned by the procedure described above). Recreational and household goods appear to be

more commonly owned by all classes than are transport goods.20 Of these, electric fans and televisions

are most popular among the top two classes, whereas fans and bicycles are most popular among the

lower class.

[INSERT TABLE 3(a) AND TABLE 3(b)]
19But randomly assigning households to classes can lead to the same household being placed in different classes in

different rounds of assignments (or draws)! This could result in different class-specific characteristics being obtained
in different draws. To address this issue, we could repeat the procedure of random assignments multiple times. We
could observe any characteristic, say Z, in the sample after each set m of random assignments (m = 1, 2, ...,M) and

report the average values of these characteristics across all the draws [ 1
M

M∑
m=1

zm] along with the standard deviations

[ 1
M

M∑
m=1

(zm −
1

M

M∑
m=1

zm)2]0.5. This process of repeated draws (here, rounds of random assignments) from the same

sample forms the essence of bootstrapping techniques (Hastie et al (2001)). (The results presented in Tables 3-4 and
Figures 7-14 are, however, obtained from a single draw as they serve a descriptive purpose.)

20This could be partly attributable to the fact that, among the 12 goods considered, there are more recreational and
household goods (5 and 4, respectively) than there are transport goods.
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[INSERT FIGURE 7(a) AND 7(b)]
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Table 4 reports the per capita monthly expenditures (PCE) of households in each assigned class.

Note, yet again, that the fundamental difference between the cutoffs-based approach and the mixture

approach lies in the postulated distribution of households: the cutoffs-based approach assumes every

household with PCE in a certain range to belong to a particular class, whereas the mixture aproach

identifies classes whose expenditures are distributed over a PCE-range. Consequently, the ranges of
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PCE of different classes are overlapping instead of being mutually exclusive.

[INSERT TABLE 4]

Keeping in mind this difference in approaches, how do the PCE of the mixture-identified classes

roughly compare with those assumed by previous studies? Take the middle class, for example. The 1st

and 99th percentiles of the daily per capita expenditure of the middle class identified here are about

$0.75 and $9.62 (at 2005 PPP), with the median being $2.10 (see Table 4: the addendum). Banerjee

and Duflo (2008) define the middle class as having a daily per capita expenditure of $2−$4 or $6−$10

at 1993 PPP (roughly $2.68−$5.36 and $8.04−$13.40 at 2005 PPP). Ravallion’s (2010) middle class

has daily per capita expenditures of $2−$13 at 2005 PPP. 21 Also, the mean number of durables owned
21The cutoffs defined by Easterly (2001) and Birdsall, Graham and Pettinato (2000) while not defined specifically

for developing nations or India would capture only the lower end of middle class PCEs identified here. For instance,
by Easterly’s (2001) denition of the middle class (those lying between the 20th and 80th percentile of the consumption
distribution), the daily PCE cutoffs would be $1.35 and $3.80 (2005 PPP-adjusted). Birdsall, Graham and Pettinato’s
(2000) denition (those lying between 75% and 125% of median income) would yield cutoffs of $1.66 and $2.76 (2005
PPP-adjusted). Birdsall’s (2010) cutoff of $10 and above (albeit for a denition of the "indispensable middle class") would
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by the middle class as per Banerjee and Duflo’s (2008) definition is found to be 3.77, which is very

close to the mean durables ownership (3.01) of the middle class identified herein. The middle class

as per Sridharan’s (2004) definition is found to own on average 5.55 durables, a considerably higher

figure.

The differences in distributional assumptions of the mixture versus the cutoffs-based approaches

implies, furthermore, that estimates of any class characteristic that is sensitive to distribution could be

very different based on which approach is used, even when the range of class-specific expenditures is

comparable across approaches (as in Banerjee and Duflo (2008) or Ravallion (2010)). As an example,

consider the estimate of the size of the middle class as a proportion of urban households. Using

Banerjee and Duflo’s (2008) definition of middle class in our (NSS, 1999-00) sample, the size of the

middle class is obtained to be 32%. Ravallion’s definition yields a middle class of 56%. The mixture

estimate obtained using the NSS, 1999-00 sample suggests a middle class that comprises 62% of urban

households.22

Figure 8 plots the education levels of the household head, by class. The lower class has the highest

component of illiterate heads (32%) whereas the upper class has the highest component of heads with

a graduate degree (38%). Middle class household heads are most likely to have secondary education

(18%) although graduates comprise a comparable component as well (15%). A large proportion (18%)

of middle class heads appear to be illiterate. This finding appears surprising if the perception of the

middle class as being largely white-collar workers is true. However, this finding would be consistent

with an environment of active social mobility post-liberalization, characterized by a large influx of

lower class members into the middle class.

[INSERT FIGURE 8]

exclude most of the middle class identied herein.
22It may not be informative to compare the size-estimates reported (implicitly) in Banerjee and Duflo (2008) and

Ravallion (2010) with the mixture estimates obtained herein, since these estimates are derived using data from completely
different years. Differences in size-estimates in these versus the current study may not be unambiguously attributed to the
difference in approach, since the size of the middle class could be changing over time too. Sridharan’s (2004) estimates,
on the other hand, are comparable to the mixture estimates in this paper, since the data used therein correspond roughly
to the same years (1998-99).
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Figure 9 presents a plot of household type by employment. Being an urban sample, the proportion

of households who are self-employed in agriculture is negligible. The largest component of households

in each class are wage/salary earners. This fact is also mirrored in Figure 10 which plots sources

of household income. Over 50% of households in each class have reported income in the past year

from wages and salaries. Income from non-agricultural enterprises is reported by more than 30% of

households in each class. A large proportion of households also report owning land. Income from

interests and dividends is the third most highly reported source of income by the top two classes 15%

and 7% of upper and middle class households, respectively. For the lower class, income from other

sources is reported by considerably more households (12%) than is income from interests and dividends

(2%).

[INSERT FIGURE 9]
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[NSERT FIGURE 10]

Figures 11 and 12 present a summary of the primary sources of energy used in cooking and lighting.

LPG is most commonly used for cooking among the top two classes; firewood and chips are most

common among lower class households. For lighting, electricity is most common in all classes, although

25% of lower class households use kerosene as the primary source of energy.
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[INSERT FIGURE 11]

[INSERT FIGURE 12]

Finally, Figures 13 and 14 provide a summary of class composition by religion and social class.

Hinduism is the religion of the majority in India, so it is not a surprise that Hindus constitute the

largest component of all classes. However, Muslims and Christians form a larger component of the
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lower class (18% and 11%, respectively) than the middle and upper classes (15% and 4% of the middle

class while 10% and 4% of the upper class are Muslim and Christian, respectively). Scheduled Castes

and Tribes also form a larger component of the lower than the middle and upper classes.

[INSERT FIGURE 13]

[INSERT FIGURE 14]
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The descriptive analysis presented above demonstrates how mixture estimates – computed using

durable ownership data – may be used to assign households to classes (albeit probabilistically), which

further permits an examination of class-specific characteristics other than durable ownership (per

capita household expenditure levels, for example). In this sense, our methodology presents a “dual”

(or reverse) strategy for class identification as compared with traditional approaches that use expen-

diture cutoffs, primarily, to identify classes and then infer the durable ownership of classes from the

expenditures-based classification.

6 Alternative Approaches to Identifying Classes: K−Means

Clustering

An alternative approach to examining natural clusters in data on durable ownership would be the use

of a traditional clustering model such as the K-Means Model (Hastie et al (2001)). In this method,

the iterative algorithm to identify clusters (or classes) attempts to divide data points into partitions,

so as to minimize the deviation of all members of a cluster from a central point in the cluster. There

is no statistical model involved in the process and the clusters – being partitions – do not intersect.

Hence, the K-Means method assigns each datapoint to a class with certainty based on its proximity

to a central point in that class.

The goal of a mixture model, on the other hand, is to identify sub-populations with the help

of a statistical model (here, binomial mixtures) so as to best fit the observed distribution of the

data points. The use of a statistical model allows the use of traditional methods of inference (e.g.

calculating standard errors, formulating tests etc). More importantly, the mixture process leads to a

probabilistic assignment of data points to sub-populations. The overlapping “fuzzy” class boundaries

are especially relevant to our current application as they are interpretable as zones of class “transitions”,

a natural component of our research question – what happened to consumption classes in India post-

liberalization?

7 Conclusion

Mixture models have been examined in depth in the statistical literature since the 1950s. However,

they have not been used widely in economic applications due to complexities in interpretation. How
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do we justify the existence of sub-populations? How do we assign “names” to the sub-populations that

are identified when all that the mixture model tells us is that they are different? How can we be sure

that the estimates we obtain are unique?

In this chapter, I present and describe the technical aspects of a three-component binomial mixture

model, which is then used to identify urban Indian consumption classes based on their total durable

ownership. The approach is well-suited for this task as class-definitions emerge from the process –

based on natural clusters in the data – instead of having to be specified by researchers. Interested

readers are encouraged to consult the larger literature on mixture models and clustering methods

(see the section below titled “Recommended Reading”) for further discussions of the topic, including

mixture analysis of more complex relationships within sub-populations.

An important goal of this chapter has been to provide a conceptual interpretation of the mixture

process, so as to demonstrate how it may be used meaningfully despite the complexities of interpretation

described above. Failing to understand or address the conceptual background for a mixture model

comes with the danger of reducing it to an arbitrary procedure for data fitting with no real informational

content. I hope the current demonstration underlines these lessons amply, and that it will inspire more

studies that effectively use mixture models to illuminate economic phenomena.
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